Recently, had this issue with CentOS.
locate: can not open `/var/lib/mlocate/mlocate.db': Permission denied
Had overcome this issue by updating with mlocate
$ sudo yum resintall mlocate
The problem has got solved!!
Tuesday, September 17, 2019
Friday, August 16, 2019
Installing BEAST2 and Beagle-lib from scratch
git clone --depth=1 https://github.com/beagle-dev/beagle-lib.git
cd beagle-lib
./autogen.sh
./configure --prefix=/home/user/Software/beast/beagle-lib
make install
export LD_LIBRARY_PATH=/home/user/Software/beast/beagle-lib/lib:$LD_LIBRARY_PATH
make check
beast/beagle-lib/examples/tinytest$ ./tinytest
Available resources:
Resource 0:
Name : CPU
Desc :
Flags: PROCESSOR_CPU PRECISION_DOUBLE PRECISION_SINGLE COMPUTATION_SYNCH EIGEN_REAL EIGEN_COMPLEX SCALING_MANUAL SCALING_AUTO SCALING_ALWAYS SCALING_DYNAMIC SCALERS_RAW SCALERS_LOG VECTOR_NONE VECTOR_SSE THREADING_NONE FRAMEWORK_CPU
Using resource 0:
Rsrc Name : CPU
Impl Name : CPU-4State-Single
Impl Desc : none
Flags: PROCESSOR_CPU PRECISION_SINGLE COMPUTATION_SYNCH EIGEN_REAL SCALING_MANUAL SCALERS_RAW VECTOR_NONE THREADING_NONE FRAMEWORK_CPU
logL = -1498.89802 (PAUP logL = -1498.89812)
sumLogL = -1498.89802
we have beagle can run with CPU. But cuda is not activated yet!
cd beagle-lib
./autogen.sh
./configure --prefix=/home/user/Software/beast/beagle-lib
make install
export LD_LIBRARY_PATH=/home/user/Software/beast/beagle-lib/lib:$LD_LIBRARY_PATH
make check
beast/beagle-lib/examples/tinytest$ ./tinytest
Available resources:
Resource 0:
Name : CPU
Desc :
Flags: PROCESSOR_CPU PRECISION_DOUBLE PRECISION_SINGLE COMPUTATION_SYNCH EIGEN_REAL EIGEN_COMPLEX SCALING_MANUAL SCALING_AUTO SCALING_ALWAYS SCALING_DYNAMIC SCALERS_RAW SCALERS_LOG VECTOR_NONE VECTOR_SSE THREADING_NONE FRAMEWORK_CPU
Using resource 0:
Rsrc Name : CPU
Impl Name : CPU-4State-Single
Impl Desc : none
Flags: PROCESSOR_CPU PRECISION_SINGLE COMPUTATION_SYNCH EIGEN_REAL SCALING_MANUAL SCALERS_RAW VECTOR_NONE THREADING_NONE FRAMEWORK_CPU
logL = -1498.89802 (PAUP logL = -1498.89812)
sumLogL = -1498.89802
$ ./beast -beagle_info
BEAST v2.6.0, 2002-2019
Bayesian Evolutionary Analysis Sampling Trees
Designed and developed by
Remco Bouckaert, Alexei J. Drummond, Andrew Rambaut & Marc A. Suchard
Centre for Computational Evolution
University of Auckland
r.bouckaert@auckland.ac.nz
alexei@cs.auckland.ac.nz
Institute of Evolutionary Biology
University of Edinburgh
a.rambaut@ed.ac.uk
David Geffen School of Medicine
University of California, Los Angeles
msuchard@ucla.edu
Downloads, Help & Resources:
http://beast2.org/
Source code distributed under the GNU Lesser General Public License:
http://github.com/CompEvol/beast2
BEAST developers:
Alex Alekseyenko, Trevor Bedford, Erik Bloomquist, Joseph Heled,
Sebastian Hoehna, Denise Kuehnert, Philippe Lemey, Wai Lok Sibon Li,
Gerton Lunter, Sidney Markowitz, Vladimir Minin, Michael Defoin Platel,
Oliver Pybus, Tim Vaughan, Chieh-Hsi Wu, Walter Xie
Thanks to:
Roald Forsberg, Beth Shapiro and Korbinian Strimmer
--- BEAGLE RESOURCES ---
0 : CPU
Flags: PRECISION_SINGLE PRECISION_DOUBLE COMPUTATION_SYNCH EIGEN_REAL EIGEN_COMPLEX SCALING_MANUAL SCALING_AUTO SCALING_ALWAYS SCALERS_RAW SCALERS_LOG VECTOR_SSE VECTOR_NONE THREADING_NONE PROCESSOR_CPU FRAMEWORK_CPU
we have beagle can run with CPU. But cuda is not activated yet!
I have installed cuda driver based on the my Ubuntu desktop version.
Check the Ubuntu version using the following command:
$ uname -a
16.04.2-Ubuntu
So, accordingly installed the cuda toolkit from the following link:
https://developer.nvidia.com/cuda-downloads
once the cuda is installed, we need to check if it is properly installed. Follow the instructions to check if it is properly installed.
https://xcat-docs.readthedocs.io/en/stable/advanced/gpu/nvidia/verify_cuda_install.html
https://xcat-docs.readthedocs.io/en/stable/advanced/gpu/nvidia/verify_cuda_install.html
The tutorial is slightly old, I had to go to /usr/local/cuda-10.1/samples
Sometime, while installing, there can be error like this:
$ make
Making all in libhmsbeagle
make[1]: Entering directory '/home/user/Software/beast/beagle-lib/libhmsbeagle'
make all-recursive
make[2]: Entering directory '/home/user/Software/beast/beagle-lib/libhmsbeagle'
Making all in GPU
make[3]: Entering directory '/home/user/Software/beast/beagle-lib/libhmsbeagle/GPU'
Making all in kernels
make[4]: Entering directory '/home/user/Software/beast/beagle-lib/libhmsbeagle/GPU/kernels'
echo "// auto-generated header file with CUDA kernels PTX code" > BeagleCUDA_kernels.h
/usr/bin/nvcc -o BeagleCUDA_kernels.ptx -ptx -DCUDA -DSTATE_COUNT=4 \
./kernels4.cu -O3 -arch compute_30 -Wno-deprecated-gpu-targets -DHAVE_CONFIG_H -I/home/user/Software/beast/beagle-lib -I/home/user/Software/beast/beagle-lib || { \rm BeagleCUDA_kernels.h; exit; }; \
echo "#define KERNELS_STRING_SP_4 \"" | sed 's/$/\\n\\/' >> BeagleCUDA_kernels.h; \
cat BeagleCUDA_kernels.ptx | sed 's/\"/\\"/g' | sed 's/$/\\n\\/' >> BeagleCUDA_kernels.h; \
echo "\"" >> BeagleCUDA_kernels.h
nvcc fatal : Path to libdevice library not specified
for s in 16 32 48 64 80 128 192; do \
echo "Making state count = $s" ; \
/usr/bin/nvcc -o BeagleCUDA_kernels.ptx -ptx -DCUDA -DSTATE_COUNT=$s \
./kernelsX.cu -O3 -arch compute_30 -Wno-deprecated-gpu-targets -DHAVE_CONFIG_H -I/home/user/Software/beast/beagle-lib -I/home/user/Software/beast/beagle-lib || { \rm BeagleCUDA_kernels.h; exit; }; \
echo "#define KERNELS_STRING_SP_$s \"" | sed 's/$/\\n\\/' >> BeagleCUDA_kernels.h; \
cat BeagleCUDA_kernels.ptx | sed 's/\"/\\"/g' | sed 's/$/\\n\\/' >> BeagleCUDA_kernels.h; \
echo "\"" >> BeagleCUDA_kernels.h; \
done
Making state count = 16
nvcc fatal : Path to libdevice library not specified
rm: cannot remove 'BeagleCUDA_kernels.h': No such file or directory
Makefile:518: recipe for target 'BeagleCUDA_kernels.h' failed
make[4]: *** [BeagleCUDA_kernels.h] Error 1
make[4]: Leaving directory '/home/user/Software/beast/beagle-lib/libhmsbeagle/GPU/kernels'
Makefile:700: recipe for target 'all-recursive' failed
make[3]: *** [all-recursive] Error 1
make[3]: Leaving directory '/home/user/Software/beast/beagle-lib/libhmsbeagle/GPU'
Makefile:622: recipe for target 'all-recursive' failed
make[2]: *** [all-recursive] Error 1
make[2]: Leaving directory '/home/user/Software/beast/beagle-lib/libhmsbeagle'
Makefile:465: recipe for target 'all' failed
make[1]: *** [all] Error 2
make[1]: Leaving directory '/home/user/Software/beast/beagle-lib/libhmsbeagle'
Makefile:611: recipe for target 'all-recursive' failed
make: *** [all-recursive] Error 1
$ make
Making all in libhmsbeagle
make[1]: Entering directory '/home/user/Software/beast/beagle-lib/libhmsbeagle'
make all-recursive
make[2]: Entering directory '/home/user/Software/beast/beagle-lib/libhmsbeagle'
Making all in GPU
make[3]: Entering directory '/home/user/Software/beast/beagle-lib/libhmsbeagle/GPU'
Making all in kernels
make[4]: Entering directory '/home/user/Software/beast/beagle-lib/libhmsbeagle/GPU/kernels'
echo "// auto-generated header file with CUDA kernels PTX code" > BeagleCUDA_kernels.h
/usr/bin/nvcc -o BeagleCUDA_kernels.ptx -ptx -DCUDA -DSTATE_COUNT=4 \
./kernels4.cu -O3 -arch compute_30 -Wno-deprecated-gpu-targets -DHAVE_CONFIG_H -I/home/user/Software/beast/beagle-lib -I/home/user/Software/beast/beagle-lib || { \rm BeagleCUDA_kernels.h; exit; }; \
echo "#define KERNELS_STRING_SP_4 \"" | sed 's/$/\\n\\/' >> BeagleCUDA_kernels.h; \
cat BeagleCUDA_kernels.ptx | sed 's/\"/\\"/g' | sed 's/$/\\n\\/' >> BeagleCUDA_kernels.h; \
echo "\"" >> BeagleCUDA_kernels.h
nvcc fatal : Path to libdevice library not specified
for s in 16 32 48 64 80 128 192; do \
echo "Making state count = $s" ; \
/usr/bin/nvcc -o BeagleCUDA_kernels.ptx -ptx -DCUDA -DSTATE_COUNT=$s \
./kernelsX.cu -O3 -arch compute_30 -Wno-deprecated-gpu-targets -DHAVE_CONFIG_H -I/home/user/Software/beast/beagle-lib -I/home/user/Software/beast/beagle-lib || { \rm BeagleCUDA_kernels.h; exit; }; \
echo "#define KERNELS_STRING_SP_$s \"" | sed 's/$/\\n\\/' >> BeagleCUDA_kernels.h; \
cat BeagleCUDA_kernels.ptx | sed 's/\"/\\"/g' | sed 's/$/\\n\\/' >> BeagleCUDA_kernels.h; \
echo "\"" >> BeagleCUDA_kernels.h; \
done
Making state count = 16
nvcc fatal : Path to libdevice library not specified
rm: cannot remove 'BeagleCUDA_kernels.h': No such file or directory
Makefile:518: recipe for target 'BeagleCUDA_kernels.h' failed
make[4]: *** [BeagleCUDA_kernels.h] Error 1
make[4]: Leaving directory '/home/user/Software/beast/beagle-lib/libhmsbeagle/GPU/kernels'
Makefile:700: recipe for target 'all-recursive' failed
make[3]: *** [all-recursive] Error 1
make[3]: Leaving directory '/home/user/Software/beast/beagle-lib/libhmsbeagle/GPU'
Makefile:622: recipe for target 'all-recursive' failed
make[2]: *** [all-recursive] Error 1
make[2]: Leaving directory '/home/user/Software/beast/beagle-lib/libhmsbeagle'
Makefile:465: recipe for target 'all' failed
make[1]: *** [all] Error 2
make[1]: Leaving directory '/home/user/Software/beast/beagle-lib/libhmsbeagle'
Makefile:611: recipe for target 'all-recursive' failed
make: *** [all-recursive] Error 1
Paste the location of cuda bin directory in bashrc (/usr/local/cuda-10.1/bin/)
export PATH="/usr/local/cuda-10.1/bin:$PATH"
$ ./beast -beagle_info
BEAST v2.6.0, 2002-2019
Bayesian Evolutionary Analysis Sampling Trees
Designed and developed by
Remco Bouckaert, Alexei J. Drummond, Andrew Rambaut & Marc A. Suchard
Centre for Computational Evolution
University of Auckland
r.bouckaert@auckland.ac.nz
alexei@cs.auckland.ac.nz
Institute of Evolutionary Biology
University of Edinburgh
a.rambaut@ed.ac.uk
David Geffen School of Medicine
University of California, Los Angeles
msuchard@ucla.edu
Downloads, Help & Resources:
http://beast2.org/
Source code distributed under the GNU Lesser General Public License:
http://github.com/CompEvol/beast2
BEAST developers:
Alex Alekseyenko, Trevor Bedford, Erik Bloomquist, Joseph Heled,
Sebastian Hoehna, Denise Kuehnert, Philippe Lemey, Wai Lok Sibon Li,
Gerton Lunter, Sidney Markowitz, Vladimir Minin, Michael Defoin Platel,
Oliver Pybus, Tim Vaughan, Chieh-Hsi Wu, Walter Xie
Thanks to:
Roald Forsberg, Beth Shapiro and Korbinian Strimmer
--- BEAGLE RESOURCES ---
0 : CPU
Flags: PRECISION_SINGLE PRECISION_DOUBLE COMPUTATION_SYNCH EIGEN_REAL EIGEN_COMPLEX SCALING_MANUAL SCALING_AUTO SCALING_ALWAYS SCALERS_RAW SCALERS_LOG VECTOR_SSE VECTOR_NONE THREADING_NONE PROCESSOR_CPU FRAMEWORK_CPU
1 : Quadro P2000
Global memory (MB): 5058
Clock speed (Ghz): 1.48
Number of cores: 1024
Flags: PRECISION_SINGLE PRECISION_DOUBLE COMPUTATION_SYNCH COMPUTATION_ASYNCH EIGEN_REAL EIGEN_COMPLEX SCALING_MANUAL SCALING_AUTO SCALING_ALWAYS SCALERS_RAW SCALERS_LOG VECTOR_NONE THREADING_NONE PROCESSOR_GPU FRAMEWORK_CUDA
export PATH="/usr/local/cuda-10.1/bin:$PATH"
$ ./beast -beagle_info
BEAST v2.6.0, 2002-2019
Bayesian Evolutionary Analysis Sampling Trees
Designed and developed by
Remco Bouckaert, Alexei J. Drummond, Andrew Rambaut & Marc A. Suchard
Centre for Computational Evolution
University of Auckland
r.bouckaert@auckland.ac.nz
alexei@cs.auckland.ac.nz
Institute of Evolutionary Biology
University of Edinburgh
a.rambaut@ed.ac.uk
David Geffen School of Medicine
University of California, Los Angeles
msuchard@ucla.edu
Downloads, Help & Resources:
http://beast2.org/
Source code distributed under the GNU Lesser General Public License:
http://github.com/CompEvol/beast2
BEAST developers:
Alex Alekseyenko, Trevor Bedford, Erik Bloomquist, Joseph Heled,
Sebastian Hoehna, Denise Kuehnert, Philippe Lemey, Wai Lok Sibon Li,
Gerton Lunter, Sidney Markowitz, Vladimir Minin, Michael Defoin Platel,
Oliver Pybus, Tim Vaughan, Chieh-Hsi Wu, Walter Xie
Thanks to:
Roald Forsberg, Beth Shapiro and Korbinian Strimmer
--- BEAGLE RESOURCES ---
0 : CPU
Flags: PRECISION_SINGLE PRECISION_DOUBLE COMPUTATION_SYNCH EIGEN_REAL EIGEN_COMPLEX SCALING_MANUAL SCALING_AUTO SCALING_ALWAYS SCALERS_RAW SCALERS_LOG VECTOR_SSE VECTOR_NONE THREADING_NONE PROCESSOR_CPU FRAMEWORK_CPU
1 : Quadro P2000
Global memory (MB): 5058
Clock speed (Ghz): 1.48
Number of cores: 1024
Flags: PRECISION_SINGLE PRECISION_DOUBLE COMPUTATION_SYNCH COMPUTATION_ASYNCH EIGEN_REAL EIGEN_COMPLEX SCALING_MANUAL SCALING_AUTO SCALING_ALWAYS SCALERS_RAW SCALERS_LOG VECTOR_NONE THREADING_NONE PROCESSOR_GPU FRAMEWORK_CUDA
Voila! Beast with Beagle installed!!
Monday, July 8, 2019
GATK - Exception in thread "main" java.lang.IncompatibleClassChangeError
$ gatk VariantsToTable -V SNP.vcf -F CHROM -F POS -F QUAL -F DP4 -F MQ -O test
Using GATK jar /home/sw/gatk-4.1.1.0/gatk-package-4.1.1.0-local.jar
Running:
java -Dsamjdk.use_async_io_read_samtools=false -Dsamjdk.use_async_io_write_samtools=true -Dsamjdk.use_async_io_write_tribble=false -Dsamjdk.compression_level=2 -jar /home/prakki/sw/gatk-4.1.1.0/gatk-package-4.1.1.0-local.jar VariantsToTable -V 14DM017529_1032_HQ_SNP.vcf -F CHROM -F POS -F QUAL -F DP4 -F MQ -O test
Runtime.totalMemory()=2155872256
Exception in thread "main" java.lang.IncompatibleClassChangeError: Inconsistent constant pool data in classfile for class org/broadinstitute/hellbender/transformers/VariantTransformer. Method lambda$identity$76d6cab0$1(Lhtsjdk/variant/variantcontext/VariantContext;)Lhtsjdk/variant/variantcontext/VariantContext; at index 65 is CONSTANT_MethodRef and should be CONSTANT_InterfaceMethodRef
at org.broadinstitute.hellbender.transformers.VariantTransformer.identity(VariantTransformer.java:32)
at org.broadinstitute.hellbender.engine.VariantWalkerBase.makePreVariantFilterTransformer(VariantWalkerBase.java:131)
at org.broadinstitute.hellbender.engine.VariantWalkerBase.getTransformedVariantStream(VariantWalkerBase.java:155)
at org.broadinstitute.hellbender.engine.VariantWalker.traverse(VariantWalker.java:98)
at org.broadinstitute.hellbender.engine.GATKTool.doWork(GATKTool.java:984)
at org.broadinstitute.hellbender.cmdline.CommandLineProgram.runTool(CommandLineProgram.java:138)
at org.broadinstitute.hellbender.cmdline.CommandLineProgram.instanceMainPostParseArgs(CommandLineProgram.java:191)
at org.broadinstitute.hellbender.cmdline.CommandLineProgram.instanceMain(CommandLineProgram.java:210)
at org.broadinstitute.hellbender.Main.runCommandLineProgram(Main.java:162)
at org.broadinstitute.hellbender.Main.mainEntry(Main.java:205)
at org.broadinstitute.hellbender.Main.main(Main.java:291)
Check for alternative versions
$ sudo update-alternatives --config java
[sudo] password for prakki:
There are 2 choices for the alternative java (providing /usr/bin/java).
Selection Path Priority Status
------------------------------------------------------------
* 0 /usr/lib/jvm/java-11-openjdk-amd64/bin/java 1101 auto mode
1 /usr/lib/jvm/java-11-openjdk-amd64/bin/java 1101 manual mode
2 /usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java 1081 manual mode
Press <enter> to keep the current choice[*], or type selection number: 2
Now, java version should have look something like this:
Using GATK jar /home/sw/gatk-4.1.1.0/gatk-package-4.1.1.0-local.jar
Running:
java -Dsamjdk.use_async_io_read_samtools=false -Dsamjdk.use_async_io_write_samtools=true -Dsamjdk.use_async_io_write_tribble=false -Dsamjdk.compression_level=2 -jar /home/prakki/sw/gatk-4.1.1.0/gatk-package-4.1.1.0-local.jar VariantsToTable -V 14DM017529_1032_HQ_SNP.vcf -F CHROM -F POS -F QUAL -F DP4 -F MQ -O test
Runtime.totalMemory()=2155872256
Exception in thread "main" java.lang.IncompatibleClassChangeError: Inconsistent constant pool data in classfile for class org/broadinstitute/hellbender/transformers/VariantTransformer. Method lambda$identity$76d6cab0$1(Lhtsjdk/variant/variantcontext/VariantContext;)Lhtsjdk/variant/variantcontext/VariantContext; at index 65 is CONSTANT_MethodRef and should be CONSTANT_InterfaceMethodRef
at org.broadinstitute.hellbender.transformers.VariantTransformer.identity(VariantTransformer.java:32)
at org.broadinstitute.hellbender.engine.VariantWalkerBase.makePreVariantFilterTransformer(VariantWalkerBase.java:131)
at org.broadinstitute.hellbender.engine.VariantWalkerBase.getTransformedVariantStream(VariantWalkerBase.java:155)
at org.broadinstitute.hellbender.engine.VariantWalker.traverse(VariantWalker.java:98)
at org.broadinstitute.hellbender.engine.GATKTool.doWork(GATKTool.java:984)
at org.broadinstitute.hellbender.cmdline.CommandLineProgram.runTool(CommandLineProgram.java:138)
at org.broadinstitute.hellbender.cmdline.CommandLineProgram.instanceMainPostParseArgs(CommandLineProgram.java:191)
at org.broadinstitute.hellbender.cmdline.CommandLineProgram.instanceMain(CommandLineProgram.java:210)
at org.broadinstitute.hellbender.Main.runCommandLineProgram(Main.java:162)
at org.broadinstitute.hellbender.Main.mainEntry(Main.java:205)
at org.broadinstitute.hellbender.Main.main(Main.java:291)
Check for alternative versions
$ sudo update-alternatives --config java
[sudo] password for prakki:
There are 2 choices for the alternative java (providing /usr/bin/java).
Selection Path Priority Status
------------------------------------------------------------
* 0 /usr/lib/jvm/java-11-openjdk-amd64/bin/java 1101 auto mode
1 /usr/lib/jvm/java-11-openjdk-amd64/bin/java 1101 manual mode
2 /usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java 1081 manual mode
Press <enter> to keep the current choice[*], or type selection number: 2
Now, java version should have look something like this:
$ java -version
openjdk version "1.8.0_212"
.....
$ gatk VariantsToTable -V SNP.vcf -F CHROM -F POS -F QUAL -F DP4 -F MQ -O test
Thursday, June 13, 2019
BEAST phylogeny - BEAGLE installation
Running a computational process on GPU is much faster than CPU. Just wanted to test this BEAST phylogeny tool. It was an amazing experience. GPU is way much faster. Just to get a glimpse of the GPU speed on 95 sample data each sequence of 5 MB:
GPU is the winner!! But installation took time.
Here are the steps.
Follow the steps from :
https://github.com/beagle-dev/beagle-lib
If the beast -beagle info gives you only the message as below, then that means your cuda is not properly installed.
--- BEAGLE RESOURCES ---
0 : CPU
I use ubuntu. So, I followed this tut:
https://github.com/beagle-dev/beagle-lib/wiki/LinuxInstallInstructions
For my purpose, I have installed cuda toolkit from here:
https://developer.nvidia.com/cuda-downloads
once the cuda is installed, we need to check if it is properly installed. Follow the instructions to check if it is properly installed.
https://xcat-docs.readthedocs.io/en/stable/advanced/gpu/nvidia/verify_cuda_install.html
If deviceQuery, bandwidthTest commands give similar result, then cuda is successfully installed.
Else if you receive an error like when you run ./bin/x86_64/linux/release/deviceQuery
That means either you need to switch the graphics cards or you need to select the appropriate driver. In my case, I had only one graphics card,
When I typed,
$ nvidia-smi -a
NVIDIA: API mismatch: the NVIDIA kernel module has version 295.59,
but this NVIDIA driver component has version 304.54. Please make
sure that the kernel module and all NVIDIA driver components
have the same version.
You can check in the page, what graphics card you have and how to switch over (not my case).
For my case, I needed to select the appropriate driver since there is a mismatch.
so, I ran this command:
$ sudo ubuntu-drivers devices
So, I was recommended to use nvidia-driver-430 for my case, where as I was using driver-418.
So, I selected to driver-430, Apply changes and restart the system
$ ./bin/x86_64/linux/release/deviceQuery
./bin/x86_64/linux/release/deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "Quadro P2000"
CUDA Driver Version / Runtime Version 10.1 / 10.1
CUDA Capability Major/Minor version number: 6.1
.....
It now works!!!!
Test beast with beagle now, you should see both CPU as well as GPU card in the resources list.
--- BEAGLE RESOURCES ---
0 : CPU
Flags: PRECISION_SINGLE PRECISION_DOUBLE COMPUTATION_SYNCH EIGEN_REAL EIGEN_COMPLEX SCALING_MANUAL SCALING_AUTO SCALING_ALWAYS SCALERS_RAW SCALERS_LOG VECTOR_SSE VECTOR_NONE THREADING_NONE PROCESSOR_CPU FRAMEWORK_CPU
1 : Quadro P2000
Global memory (MB): 5058
Clock speed (Ghz): 1.48
Number of cores: 1024
Flags: PRECISION_SINGLE PRECISION_DOUBLE COMPUTATION_SYNCH COMPUTATION_ASYNCH EIGEN_REAL EIGEN_COMPLEX SCALING_MANUAL SCALING_AUTO SCALING_ALWAYS SCALERS_RAW SCALERS_LOG VECTOR_NONE THREADING_NONE PROCESSOR_GPU FRAMEWORK_CUDA
Thats it!
GPU is the winner!! But installation took time.
Here are the steps.
Follow the steps from :
https://github.com/beagle-dev/beagle-lib
If the beast -beagle info gives you only the message as below, then that means your cuda is not properly installed.
--- BEAGLE RESOURCES ---
0 : CPU
Flags: PRECISION_SINGLE PRECISION_DOUBLE COMPUTATION_SYNCH EIGEN_REAL EIGEN_COMPLEX SCALING_MANUAL SCALING_AUTO SCALING_ALWAYS SCALERS_RAW SCALERS_LOG VECTOR_SSE VECTOR_NONE THREADING_NONE PROCESSOR_CPU FRAMEWORK_CPU
I use ubuntu. So, I followed this tut:
https://github.com/beagle-dev/beagle-lib/wiki/LinuxInstallInstructions
For my purpose, I have installed cuda toolkit from here:
https://developer.nvidia.com/cuda-downloads
$ sudo dpkg -i cuda-repo-ubuntu1804-10-1-local-10.1.168-418.67_1.0-1_amd64.deb
(Reading database ... 396141 files and directories currently installed.)
Preparing to unpack cuda-repo-ubuntu1804-10-1-local-10.1.168-418.67_1.0-1_amd64.deb ...
Unpacking cuda-repo-ubuntu1804-10-1-local-10.1.168-418.67 (1.0-1) over (1.0-1) ...
Setting up cuda-repo-ubuntu1804-10-1-local-10.1.168-418.67 (1.0-1) ...
https://xcat-docs.readthedocs.io/en/stable/advanced/gpu/nvidia/verify_cuda_install.html
If deviceQuery, bandwidthTest commands give similar result, then cuda is successfully installed.
Else if you receive an error like when you run ./bin/x86_64/linux/release/deviceQuery
-> no CUDA-capable device is detected
That means either you need to switch the graphics cards or you need to select the appropriate driver. In my case, I had only one graphics card,
When I typed,
$ nvidia-smi -a
NVIDIA: API mismatch: the NVIDIA kernel module has version 295.59,
but this NVIDIA driver component has version 304.54. Please make
sure that the kernel module and all NVIDIA driver components
have the same version.
You can check in the page, what graphics card you have and how to switch over (not my case).
For my case, I needed to select the appropriate driver since there is a mismatch.
so, I ran this command:
$ sudo ubuntu-drivers devices
So, I was recommended to use nvidia-driver-430 for my case, where as I was using driver-418.
So, I selected to driver-430, Apply changes and restart the system
$ ./bin/x86_64/linux/release/deviceQuery
./bin/x86_64/linux/release/deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "Quadro P2000"
CUDA Driver Version / Runtime Version 10.1 / 10.1
CUDA Capability Major/Minor version number: 6.1
.....
Result = PASS
$ ./bin/x86_64/linux/release/bandwidthTest
[CUDA Bandwidth Test] - Starting...
Running on...
Device 0: Quadro P2000
Quick Mode
.......
Result = PASS
NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
It now works!!!!
Test beast with beagle now, you should see both CPU as well as GPU card in the resources list.
--- BEAGLE RESOURCES ---
0 : CPU
Flags: PRECISION_SINGLE PRECISION_DOUBLE COMPUTATION_SYNCH EIGEN_REAL EIGEN_COMPLEX SCALING_MANUAL SCALING_AUTO SCALING_ALWAYS SCALERS_RAW SCALERS_LOG VECTOR_SSE VECTOR_NONE THREADING_NONE PROCESSOR_CPU FRAMEWORK_CPU
1 : Quadro P2000
Global memory (MB): 5058
Clock speed (Ghz): 1.48
Number of cores: 1024
Flags: PRECISION_SINGLE PRECISION_DOUBLE COMPUTATION_SYNCH COMPUTATION_ASYNCH EIGEN_REAL EIGEN_COMPLEX SCALING_MANUAL SCALING_AUTO SCALING_ALWAYS SCALERS_RAW SCALERS_LOG VECTOR_NONE THREADING_NONE PROCESSOR_GPU FRAMEWORK_CUDA
Thats it!
Thursday, April 25, 2019
Extract a specific gene contig from multiple assemblies
1) Copy and paste a gene (for example NDM-1) from a database in text file - NDM-1.fa
2) Create blast DB for NDM gene using following command
$ makeblastdb -in NDM-1.fa -dbtype nucl -out NDM-1.fa.DB -parse_seqids
3) BLAST the assemblies against the NDM gene
$ for d in $(ls */assembly.fasta); do \
sample=`echo $d | sed 's/\/assembly.fasta//g'`; \
echo "$sample"; sed -i "s/>/>"$sample"_/g" $d; \
sed -i 's/ /_/g' $d; \
~/sw/ncbi-blast-2.7.1+/bin/blastn -db NDM-1.fa.DB -query $d -outfmt '6 qseqid sseqid pident nident length mismatch gapopen qstart qend sstart send evalue bitscore qlen slen' -num_threads 4 -out "$sample"_vs_NDM_blastresults.txt; done
This would rename all the contigs in the assembly.fasta with the directory name which holds assembly.fasta
4) cat *.txt | column -t
THY1079 NDM-1_JQ080305_1-813_813 100 813 813 0 0 48157 48969 813 1 0 1502 91643 813
THY1219 NDM-1_JQ080305_1-813_813 100 813 813 0 0 4586 5398 813 1 0 1502 13505 813
THY1250 NDM-1_JQ080305_1-813_813 99.754 811 813 2 0 14408 15220 1 813 0 1491 88353 813
THY1357 NDM-1_JQ080305_1-813_813 100 813 813 0 0 78370 79182 813 1 0 1502 177751 813
THY1440 NDM-1_JQ080305_1-813_813 99.754 811 813 2 0 14408 15220 1 813 0 1491 96544 813
THY1669 NDM-1_JQ080305_1-813_813 100 813 813 0 0 6747 7559 813 1 0 1502 118064 813
THY1758 NDM-1_JQ080305_1-813_813 99.754 811 813 2 0 5708 6520 1 813 0 1491 62334 813
THY1916 NDM-1_JQ080305_1-813_813 100 813 813 0 0 19307 20119 813 1 0 1502 278408 813
THY1940 NDM-1_JQ080305_1-813_813 100 813 813 0 0 3171762 3172574 1 813 0 1502 4879405 813
THY1968 NDM-1_JQ080305_1-813_813 100 813 813 0 0 3173593 3174405 1 813 0 1502 4880726 813
THY285 NDM-1_JQ080305_1-813_813 99.754 811 813 2 0 25547 26359 1 813 0 1491 46161 813
THY337 NDM-1_JQ080305_1-813_813 100 813 813 0 0 57706 58518 1 813 0 1502 88057 813
THY708 NDM-1_JQ080305_1-813_813 100 813 813 0 0 302 1114 1 813 0 1502 14280 813
THY807 NDM-1_JQ080305_1-813_813 99.754 811 813 2 0 2469 3281 1 813 0 1491 5469 813
THY924 NDM-1_JQ080305_1-813_813 99.754 811 813 2 0 36917 37729 1 813 0 1491 75214 813
THY924 NDM-1_JQ080305_1-813_813 99.754 811 813 2 0 20047 20859 813 1 0 1491 70472 813
5) extract the NDM_gene from the assemblies
fgrep -A1 -f <(cat *.txt | cut -f1) <(cat */assembly.fasta | awk '/^>/ {printf("\n%s\n",$0);next; } { printf("%s",$0);} END {printf("\n");}') >NDM_positive_contigs.fasta
<(cat *.txt | cut -f1) -process substitution operator - gives the list of contig names
cat */assembly.fasta | awk '/^>/ {printf("\n%s\n",$0);next; } { printf("%s",$0);} END {printf("\n");}' - this woud convert all the multiline fasta to single line fasta
-A1 get the single line after the match
2) Create blast DB for NDM gene using following command
$ makeblastdb -in NDM-1.fa -dbtype nucl -out NDM-1.fa.DB -parse_seqids
3) BLAST the assemblies against the NDM gene
$ for d in $(ls */assembly.fasta); do \
sample=`echo $d | sed 's/\/assembly.fasta//g'`; \
echo "$sample"; sed -i "s/>/>"$sample"_/g" $d; \
sed -i 's/ /_/g' $d; \
~/sw/ncbi-blast-2.7.1+/bin/blastn -db NDM-1.fa.DB -query $d -outfmt '6 qseqid sseqid pident nident length mismatch gapopen qstart qend sstart send evalue bitscore qlen slen' -num_threads 4 -out "$sample"_vs_NDM_blastresults.txt; done
This would rename all the contigs in the assembly.fasta with the directory name which holds assembly.fasta
4) cat *.txt | column -t
THY1079 NDM-1_JQ080305_1-813_813 100 813 813 0 0 48157 48969 813 1 0 1502 91643 813
THY1219 NDM-1_JQ080305_1-813_813 100 813 813 0 0 4586 5398 813 1 0 1502 13505 813
THY1250 NDM-1_JQ080305_1-813_813 99.754 811 813 2 0 14408 15220 1 813 0 1491 88353 813
THY1357 NDM-1_JQ080305_1-813_813 100 813 813 0 0 78370 79182 813 1 0 1502 177751 813
THY1440 NDM-1_JQ080305_1-813_813 99.754 811 813 2 0 14408 15220 1 813 0 1491 96544 813
THY1669 NDM-1_JQ080305_1-813_813 100 813 813 0 0 6747 7559 813 1 0 1502 118064 813
THY1758 NDM-1_JQ080305_1-813_813 99.754 811 813 2 0 5708 6520 1 813 0 1491 62334 813
THY1916 NDM-1_JQ080305_1-813_813 100 813 813 0 0 19307 20119 813 1 0 1502 278408 813
THY1940 NDM-1_JQ080305_1-813_813 100 813 813 0 0 3171762 3172574 1 813 0 1502 4879405 813
THY1968 NDM-1_JQ080305_1-813_813 100 813 813 0 0 3173593 3174405 1 813 0 1502 4880726 813
THY285 NDM-1_JQ080305_1-813_813 99.754 811 813 2 0 25547 26359 1 813 0 1491 46161 813
THY337 NDM-1_JQ080305_1-813_813 100 813 813 0 0 57706 58518 1 813 0 1502 88057 813
THY708 NDM-1_JQ080305_1-813_813 100 813 813 0 0 302 1114 1 813 0 1502 14280 813
THY807 NDM-1_JQ080305_1-813_813 99.754 811 813 2 0 2469 3281 1 813 0 1491 5469 813
THY924 NDM-1_JQ080305_1-813_813 99.754 811 813 2 0 36917 37729 1 813 0 1491 75214 813
THY924 NDM-1_JQ080305_1-813_813 99.754 811 813 2 0 20047 20859 813 1 0 1491 70472 813
5) extract the NDM_gene from the assemblies
fgrep -A1 -f <(cat *.txt | cut -f1) <(cat */assembly.fasta | awk '/^>/ {printf("\n%s\n",$0);next; } { printf("%s",$0);} END {printf("\n");}') >NDM_positive_contigs.fasta
<(cat *.txt | cut -f1) -process substitution operator - gives the list of contig names
cat */assembly.fasta | awk '/^>/ {printf("\n%s\n",$0);next; } { printf("%s",$0);} END {printf("\n");}' - this woud convert all the multiline fasta to single line fasta
-A1 get the single line after the match
Friday, April 5, 2019
Search for a protein in specific genome database
1) Go to NCBI Blast page and select tblastn
2) Select the protein you want to check, for example, I want to check the following protein is present in the database. Select the protein accession and copy it in the query box.
4) Blast! If you find the protein sequences in the genome, it will appears in the results.
Note: It will take time, if you are using proteins to search because BLAST has to translate all the 6 frames and search against the database. For faster check of the presence of the sequences in the database, it is better to do a local NCBI blast.
Wednesday, April 3, 2019
locate: can not open `/var/lib/mlocate/mlocate.db': Permission denied - Solved!
$ locate unicycler
locate: can not open `/var/lib/mlocate/mlocate.db': Permission denied
Changing the permission solved the issue!
$ sudo chmod -R 755 /var/lib/mlocate/mlocate.db
$ locate unicycler
/home/user/Lab_Doc_Share/Assembly/SA3_Noclean_barcode01_unicycler.log
locate: can not open `/var/lib/mlocate/mlocate.db': Permission denied
Changing the permission solved the issue!
$ sudo chmod -R 755 /var/lib/mlocate/mlocate.db
$ locate unicycler
/home/user/Lab_Doc_Share/Assembly/SA3_Noclean_barcode01_unicycler.log
Monday, April 1, 2019
Installing nanopack
$ pip install nanopack
Collecting nanopack
Collecting nanoplotter>=0.16.5 (from nanopack)
Collecting NanoPlot>=0.20.1 (from nanopack)
Collecting NanoLyse>=0.2.1 (from nanopack)
Collecting NanoFilt>=1.5.2 (from nanopack)
Collecting nanomath>=0.13.3 (from nanopack)
Collecting nanoget>=0.15.0 (from nanopack)
Collecting NanoStat>=0.6.1 (from nanopack)
Collecting numpy (from nanoplotter>=0.16.5->nanopack)
Using cached https://files.pythonhosted.org/packages/e0/b5/63b79fe426433fa1cd110eb04a94ec0c6967e56e5f57c98caf455a5fb6e2/numpy-1.16.1-cp27-cp27mu-manylinux1_x86_64.whl
Collecting seaborn (from nanoplotter>=0.16.5->nanopack)
Collecting pauvre (from nanoplotter>=0.16.5->nanopack)
Collecting pandas (from nanoplotter>=0.16.5->nanopack)
Using cached https://files.pythonhosted.org/packages/c5/88/b8659eecde0350d37d5b47c1c2a88f39e6153e5809bcfc48bb7fde6f231b/pandas-0.24.1-cp27-cp27mu-manylinux1_x86_64.whl
Collecting matplotlib>=2.0.0 (from nanoplotter>=0.16.5->nanopack)
Using cached https://files.pythonhosted.org/packages/59/08/04933377dc4500e3698e93f9113dc3624874e0914f4c85767ecb5b389084/matplotlib-2.2.3-cp27-cp27mu-manylinux1_x86_64.whl
Collecting scipy (from nanoplotter>=0.16.5->nanopack)
Using cached https://files.pythonhosted.org/packages/81/39/f1457091d0a45a84a2bd7815e2cf6bd45d4fe240728e9ed567cbb17c8abe/scipy-1.2.1-cp27-cp27mu-manylinux1_x86_64.whl
Collecting biopython (from NanoPlot>=0.20.1->nanopack)
Using cached https://files.pythonhosted.org/packages/19/4e/ac487da685e947c56fafd10b2a04c6a09f0051c2e7665a873263f5e303f2/biopython-1.73-cp27-cp27mu-manylinux1_x86_64.whl
Collecting pysam>0.10.0.0 (from NanoPlot>=0.20.1->nanopack)
Using cached https://files.pythonhosted.org/packages/0f/bd/f5ab828a9ff45a6ca14d5ea2a3580f720134052db258cd7ef929a4ed1d7a/pysam-0.15.2-cp27-cp27mu-manylinux1_x86_64.whl
Collecting python-dateutil (from NanoPlot>=0.20.1->nanopack)
Using cached https://files.pythonhosted.org/packages/41/17/c62faccbfbd163c7f57f3844689e3a78bae1f403648a6afb1d0866d87fbb/python_dateutil-2.8.0-py2.py3-none-any.whl
Collecting mappy>=2.2 (from NanoLyse>=0.2.1->nanopack)
Collecting pytz>=2011k (from pandas->nanoplotter>=0.16.5->nanopack)
Using cached https://files.pythonhosted.org/packages/61/28/1d3920e4d1d50b19bc5d24398a7cd85cc7b9a75a490570d5a30c57622d34/pytz-2018.9-py2.py3-none-any.whl
Collecting cycler>=0.10 (from matplotlib>=2.0.0->nanoplotter>=0.16.5->nanopack)
Using cached https://files.pythonhosted.org/packages/f7/d2/e07d3ebb2bd7af696440ce7e754c59dd546ffe1bbe732c8ab68b9c834e61/cycler-0.10.0-py2.py3-none-any.whl
Collecting backports.functools-lru-cache (from matplotlib>=2.0.0->nanoplotter>=0.16.5->nanopack)
Using cached https://files.pythonhosted.org/packages/03/8e/2424c0e65c4a066e28f539364deee49b6451f8fcd4f718fefa50cc3dcf48/backports.functools_lru_cache-1.5-py2.py3-none-any.whl
Collecting subprocess32 (from matplotlib>=2.0.0->nanoplotter>=0.16.5->nanopack)
Collecting kiwisolver>=1.0.1 (from matplotlib>=2.0.0->nanoplotter>=0.16.5->nanopack)
Using cached https://files.pythonhosted.org/packages/3a/62/a8c9bef3059d55ab38e41fe9cba4fad773bfc04e47290bab84db1c18262e/kiwisolver-1.0.1-cp27-cp27mu-manylinux1_x86_64.whl
Collecting six>=1.10 (from matplotlib>=2.0.0->nanoplotter>=0.16.5->nanopack)
Using cached https://files.pythonhosted.org/packages/73/fb/00a976f728d0d1fecfe898238ce23f502a721c0ac0ecfedb80e0d88c64e9/six-1.12.0-py2.py3-none-any.whl
Collecting pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 (from matplotlib>=2.0.0->nanoplotter>=0.16.5->nanopack)
Using cached https://files.pythonhosted.org/packages/de/0a/001be530836743d8be6c2d85069f46fecf84ac6c18c7f5fb8125ee11d854/pyparsing-2.3.1-py2.py3-none-any.whl
Collecting setuptools (from kiwisolver>=1.0.1->matplotlib>=2.0.0->nanoplotter>=0.16.5->nanopack)
Using cached https://files.pythonhosted.org/packages/d1/6a/4b2fcefd2ea0868810e92d519dacac1ddc64a2e53ba9e3422c3b62b378a6/setuptools-40.8.0-py2.py3-none-any.whl
Installing collected packages: numpy, pytz, six, python-dateutil, pandas, scipy, cycler, backports.functools-lru-cache, subprocess32, setuptools, kiwisolver, pyparsing, matplotlib, seaborn, biopython, pauvre, nanoplotter, pysam, nanomath, nanoget, NanoPlot, mappy, NanoLyse, NanoFilt, NanoStat, nanopack
Successfully installed NanoFilt-2.0.0 NanoLyse-0.5.0 NanoPlot-1.8.1 NanoStat-0.8.0 backports.functools-lru-cache-1.5 biopython-1.73 cycler-0.10.0 kiwisolver-1.0.1 mappy-2.15 matplotlib-2.2.3 nanoget-1.2.0 nanomath-0.15.1 nanopack-0.1.4 nanoplotter-0.28.0 numpy-1.16.1 pandas-0.24.1 pauvre-0.1.86 pyparsing-2.3.1 pysam-0.15.2 python-dateutil-2.8.0 pytz-2018.9 scipy-1.2.1 seaborn-0.9.0 setuptools-40.8.0 six-1.12.0 subprocess32-3.5.3
$ NanoPlot
NanoPlot: command not found
$ pip install nanopack
Collecting nanopack
Downloading https://files.pythonhosted.org/packages/3b/cc/52bdfaa3fb739d6fc26ac9ec55cd63d7db06d73bf0d7d096b37b7b2839bf/nanopack-0.1.4.tar.gz
Collecting NanoPlot>=0.20.1 (from nanopack)
Downloading https://files.pythonhosted.org/packages/d6/9e/992d05d1e8a72a3de6dd945a6c2fab64ddae0b95657b3263809a4c125ecb/NanoPlot-1.8.1.tar.gz
Collecting NanoStat>=0.6.1 (from nanopack)
Downloading https://files.pythonhosted.org/packages/5f/58/6555371d9c6fe42c67e64bcf1a4e2a25d237f086292f696a814c12149a68/NanoStat-0.8.0.tar.gz
Collecting NanoFilt>=1.5.2 (from nanopack)
Downloading https://files.pythonhosted.org/packages/b9/96/6e9025334a704d64140e8d7fc664c0a11e3e98ba16d109ea12dc6ca2d067/NanoFilt-2.0.0.tar.gz
Collecting NanoLyse>=0.2.1 (from nanopack)
Downloading https://files.pythonhosted.org/packages/37/ec/3ce7573f77a341040f77de0988594d2229522b8a52384f7a29aecf7082b2/NanoLyse-0.5.0.tar.gz
Collecting nanoget>=0.15.0 (from nanopack)
Downloading https://files.pythonhosted.org/packages/b0/a4/d925390225969242be5e1ff8e019372a3831b3cd71870164c4c95b243449/nanoget-1.2.0.tar.gz
Collecting nanomath>=0.13.3 (from nanopack)
Downloading https://files.pythonhosted.org/packages/6d/cd/b6ea00834b31c20de01fdaaea334e87bbba04ec47222f6f17d06a47b06d2/nanomath-0.15.1.tar.gz
Collecting nanoplotter>=0.16.5 (from nanopack)
Downloading https://files.pythonhosted.org/packages/3e/6c/1e0ec0d9eb36ad6ebca1f9be2a388e620c91279987a15a42ad4b2756cd5f/nanoplotter-0.28.0.tar.gz
Collecting biopython (from NanoPlot>=0.20.1->nanopack)
Downloading https://files.pythonhosted.org/packages/19/4e/ac487da685e947c56fafd10b2a04c6a09f0051c2e7665a873263f5e303f2/biopython-1.73-cp27-cp27mu-manylinux1_x86_64.whl (2.2MB)
100% |████████████████████████████████| 2.2MB 1.3MB/s
Collecting pysam>0.10.0.0 (from NanoPlot>=0.20.1->nanopack)
Downloading https://files.pythonhosted.org/packages/0f/bd/f5ab828a9ff45a6ca14d5ea2a3580f720134052db258cd7ef929a4ed1d7a/pysam-0.15.2-cp27-cp27mu-manylinux1_x86_64.whl (8.9MB)
100% |████████████████████████████████| 8.9MB 1.5MB/s
Collecting pandas (from NanoPlot>=0.20.1->nanopack)
Downloading https://files.pythonhosted.org/packages/c5/88/b8659eecde0350d37d5b47c1c2a88f39e6153e5809bcfc48bb7fde6f231b/pandas-0.24.1-cp27-cp27mu-manylinux1_x86_64.whl (10.1MB)
100% |████████████████████████████████| 10.1MB 3.1MB/s
Collecting numpy (from NanoPlot>=0.20.1->nanopack)
Downloading https://files.pythonhosted.org/packages/e0/b5/63b79fe426433fa1cd110eb04a94ec0c6967e56e5f57c98caf455a5fb6e2/numpy-1.16.1-cp27-cp27mu-manylinux1_x86_64.whl (17.0MB)
100% |████████████████████████████████| 17.0MB 2.9MB/s
Collecting scipy (from NanoPlot>=0.20.1->nanopack)
Downloading https://files.pythonhosted.org/packages/81/39/f1457091d0a45a84a2bd7815e2cf6bd45d4fe240728e9ed567cbb17c8abe/scipy-1.2.1-cp27-cp27mu-manylinux1_x86_64.whl (24.8MB)
100% |████████████████████████████████| 24.8MB 2.4MB/s
Collecting python-dateutil (from NanoPlot>=0.20.1->nanopack)
Downloading https://files.pythonhosted.org/packages/41/17/c62faccbfbd163c7f57f3844689e3a78bae1f403648a6afb1d0866d87fbb/python_dateutil-2.8.0-py2.py3-none-any.whl (226kB)
100% |████████████████████████████████| 235kB 1.4MB/s
Collecting seaborn (from NanoPlot>=0.20.1->nanopack)
Downloading https://files.pythonhosted.org/packages/7a/bf/04cfcfc9616cedd4b5dd24dfc40395965ea9f50c1db0d3f3e52b050f74a5/seaborn-0.9.0.tar.gz (198kB)
100% |████████████████████████████████| 204kB 1.8MB/s
Collecting mappy>=2.2 (from NanoLyse>=0.2.1->nanopack)
Downloading https://files.pythonhosted.org/packages/0d/66/8e1170f36283f45743e3e6e923a513e2386d5df93e935daba27e7e0d2ad6/mappy-2.15.tar.gz (195kB)
100% |████████████████████████████████| 204kB 2.4MB/s
Collecting matplotlib>=2.0.0 (from nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/59/08/04933377dc4500e3698e93f9113dc3624874e0914f4c85767ecb5b389084/matplotlib-2.2.3-cp27-cp27mu-manylinux1_x86_64.whl (12.6MB)
100% |████████████████████████████████| 12.6MB 2.9MB/s
Collecting pauvre (from nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/f0/70/b1a2c106128156d2f234964caee3f900733f81b67df51ffa62591e5bba46/pauvre-0.1.86.tar.gz (40kB)
100% |████████████████████████████████| 40kB 27.8MB/s
Collecting pytz>=2011k (from pandas->NanoPlot>=0.20.1->nanopack)
Downloading https://files.pythonhosted.org/packages/61/28/1d3920e4d1d50b19bc5d24398a7cd85cc7b9a75a490570d5a30c57622d34/pytz-2018.9-py2.py3-none-any.whl (510kB)
100% |████████████████████████████████| 512kB 3.5MB/s
Collecting six>=1.5 (from python-dateutil->NanoPlot>=0.20.1->nanopack)
Downloading https://files.pythonhosted.org/packages/73/fb/00a976f728d0d1fecfe898238ce23f502a721c0ac0ecfedb80e0d88c64e9/six-1.12.0-py2.py3-none-any.whl
Collecting cycler>=0.10 (from matplotlib>=2.0.0->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/f7/d2/e07d3ebb2bd7af696440ce7e754c59dd546ffe1bbe732c8ab68b9c834e61/cycler-0.10.0-py2.py3-none-any.whl
Collecting backports.functools-lru-cache (from matplotlib>=2.0.0->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/03/8e/2424c0e65c4a066e28f539364deee49b6451f8fcd4f718fefa50cc3dcf48/backports.functools_lru_cache-1.5-py2.py3-none-any.whl
Collecting subprocess32 (from matplotlib>=2.0.0->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/be/2b/beeba583e9877e64db10b52a96915afc0feabf7144dcbf2a0d0ea68bf73d/subprocess32-3.5.3.tar.gz (96kB)
100% |████████████████████████████████| 102kB 2.6MB/s
Collecting kiwisolver>=1.0.1 (from matplotlib>=2.0.0->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/3a/62/a8c9bef3059d55ab38e41fe9cba4fad773bfc04e47290bab84db1c18262e/kiwisolver-1.0.1-cp27-cp27mu-manylinux1_x86_64.whl (951kB)
100% |████████████████████████████████| 952kB 3.0MB/s
Collecting pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 (from matplotlib>=2.0.0->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/de/0a/001be530836743d8be6c2d85069f46fecf84ac6c18c7f5fb8125ee11d854/pyparsing-2.3.1-py2.py3-none-any.whl (61kB)
100% |████████████████████████████████| 71kB 35.6MB/s
Collecting setuptools (from kiwisolver>=1.0.1->matplotlib>=2.0.0->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/d1/6a/4b2fcefd2ea0868810e92d519dacac1ddc64a2e53ba9e3422c3b62b378a6/setuptools-40.8.0-py2.py3-none-any.whl (575kB)
100% |████████████████████████████████| 583kB 2.9MB/s
Installing collected packages: numpy, biopython, pysam, pytz, six, python-dateutil, pandas, scipy, cycler, backports.functools-lru-cache, subprocess32, setuptools, kiwisolver, pyparsing, matplotlib, seaborn, pauvre, nanoplotter, nanomath, nanoget, NanoPlot, NanoStat, NanoFilt, mappy, NanoLyse, nanopack
Running setup.py install for subprocess32 ... done
Running setup.py install for seaborn ... done
Running setup.py install for pauvre ... done
Running setup.py install for nanoplotter ... done
Running setup.py install for nanomath ... done
Running setup.py install for nanoget ... done
Running setup.py install for NanoPlot ... done
Running setup.py install for NanoStat ... done
Running setup.py install for NanoFilt ... done
Running setup.py install for mappy ... done
Running setup.py install for NanoLyse ... done
Running setup.py install for nanopack ... done
Successfully installed NanoFilt-2.0.0 NanoLyse-0.5.0 NanoPlot-1.8.1 NanoStat-0.8.0 backports.functools-lru-cache-1.5 biopython-1.73 cycler-0.10.0 kiwisolver-1.0.1 mappy-2.15 matplotlib-2.2.3 nanoget-1.2.0 nanomath-0.15.1 nanopack-0.1.4 nanoplotter-0.28.0 numpy-1.16.1 pandas-0.24.1 pauvre-0.1.86 pyparsing-2.3.1 pysam-0.15.2 python-dateutil-2.8.0 pytz-2018.9 scipy-1.2.1 seaborn-0.9.0 setuptools-40.8.0 six-1.12.0 subprocess32-3.5.3
$ pip list | grep NanoPlot
NanoPlot (1.8.1)
$ sudo pip install nanopack
[sudo] password for user:
The directory '/home/user/.cache/pip/http' or its parent directory is not owned by the current user and the cache has been disabled. Please check the permissions and owner of that directory. If executing pip with sudo, you may want sudo's -H flag.
The directory '/home/user/.cache/pip' or its parent directory is not owned by the current user and caching wheels has been disabled. check the permissions and owner of that directory. If executing pip with sudo, you may want sudo's -H flag.
Requirement already satisfied: nanopack in /home/user/.local/lib/python2.7/site-packages
Requirement already satisfied: NanoPlot>=0.20.1 in /home/user/.local/lib/python2.7/site-packages (from nanopack)
Requirement already satisfied: NanoStat>=0.6.1 in /home/user/.local/lib/python2.7/site-packages (from nanopack)
Requirement already satisfied: NanoFilt>=1.5.2 in /home/user/.local/lib/python2.7/site-packages (from nanopack)
Requirement already satisfied: NanoLyse>=0.2.1 in /home/user/.local/lib/python2.7/site-packages (from nanopack)
Added the path in bashrc
Still no luck!
Tried this:
$ pip3 install nanopack
Collecting nanopack
Downloading https://files.pythonhosted.org/packages/54/24/f5b5a96a6a32d1127eb547745ab9572286035058f60a2988bdd2b1673bd7/nanopack-1.0.0.tar.gz
Collecting NanoComp>=0.4.0 (from nanopack)
Downloading https://files.pythonhosted.org/packages/75/4f/9e8f5c304d1644ab0892e35de294188d99aa8eb3df351d19c199b51f3ae6/NanoComp-1.4.0.tar.gz
Collecting NanoFilt>=1.5.2 (from nanopack)
Downloading https://files.pythonhosted.org/packages/dc/4a/dacdbbd28973d2d56ad0c0f3bf578f2bdfb68c9d27d7828034ea05cc90bc/NanoFilt-2.2.0.tar.gz
Collecting NanoGUI (from nanopack)
Downloading https://files.pythonhosted.org/packages/bd/a1/6cf74f2086e4e7215c740c28671337f01d126e9d2f4ec6ebacc47fd792de/NanoGUI-0.1.0.tar.gz
Collecting NanoLyse>=0.2.1 (from nanopack)
Downloading https://files.pythonhosted.org/packages/e9/52/812e19f50576871e82c0f5e8f188f4a7de99199fe1ceb50c33ac353de408/NanoLyse-1.1.0.tar.gz
Collecting NanoPlot>=0.20.1 (from nanopack)
Downloading https://files.pythonhosted.org/packages/f2/79/849cda1c7a6a124ccbf9e81d4c2e61ec6d780a841f4b6bb04aa942b47fcc/NanoPlot-1.21.0.tar.gz
Collecting NanoStat>=0.6.1 (from nanopack)
Downloading https://files.pythonhosted.org/packages/9c/8e/3fd581ebe737d1bf6716e5e8731f6677a84ab71bb0291b0cf8f1a9c6b656/NanoStat-1.1.2.tar.gz
Collecting nanoget>=0.15.0 (from nanopack)
Downloading https://files.pythonhosted.org/packages/2e/97/f439c3cdb85d99288091b1224460d6b6245ceaa962286744e89006b95aa8/nanoget-1.7.7.tar.gz
Collecting nanomath>=0.13.3 (from nanopack)
Downloading https://files.pythonhosted.org/packages/19/0b/2cdf6f70b6b7e581b7149b60f9117841326186d44aa62f60ed18280f7515/nanomath-0.22.0.tar.gz
Collecting nanoplotter>=0.16.5 (from nanopack)
Downloading https://files.pythonhosted.org/packages/0c/85/86e0323e7448c3c96b7cb17cd41c1e99c80336380cdb77b48debbb82772b/nanoplotter-1.3.1.tar.gz
Collecting numpy (from NanoComp>=0.4.0->nanopack)
Downloading https://files.pythonhosted.org/packages/f5/bf/4981bcbee43934f0adb8f764a1e70ab0ee5a448f6505bd04a87a2fda2a8b/numpy-1.16.1-cp36-cp36m-manylinux1_x86_64.whl (17.3MB)
100% |████████████████████████████████| 17.3MB 82kB/s
Collecting pandas (from NanoComp>=0.4.0->nanopack)
Downloading https://files.pythonhosted.org/packages/e6/de/a0d3defd8f338eaf53ef716e40ef6d6c277c35d50e09b586e170169cdf0d/pandas-0.24.1-cp36-cp36m-manylinux1_x86_64.whl (10.1MB)
100% |████████████████████████████████| 10.1MB 125kB/s
Collecting psutil (from NanoComp>=0.4.0->nanopack)
Downloading https://files.pythonhosted.org/packages/c7/01/7c30b247cdc5ba29623faa5c8cf1f1bbf7e041783c340414b0ed7e067c64/psutil-5.5.1.tar.gz (426kB)
100% |████████████████████████████████| 430kB 3.0MB/s
Collecting biopython (from NanoFilt>=1.5.2->nanopack)
Downloading https://files.pythonhosted.org/packages/28/15/8ac646ff24cfa2588b4d5e5ea51e8d13f3d35806bd9498fbf40ef79026fd/biopython-1.73-cp36-cp36m-manylinux1_x86_64.whl (2.2MB)
100% |████████████████████████████████| 2.2MB 512kB/s
Collecting mappy>=2.2 (from NanoLyse>=0.2.1->nanopack)
Using cached https://files.pythonhosted.org/packages/0d/66/8e1170f36283f45743e3e6e923a513e2386d5df93e935daba27e7e0d2ad6/mappy-2.15.tar.gz
Collecting pysam>0.10.0.0 (from NanoPlot>=0.20.1->nanopack)
Downloading https://files.pythonhosted.org/packages/f1/fc/d2be1a093bd8494ab63e3168aca36c2494753bbff190f3201ce2e7da9cda/pysam-0.15.2-cp36-cp36m-manylinux1_x86_64.whl (9.6MB)
100% |████████████████████████████████| 9.6MB 126kB/s
Collecting python-dateutil (from NanoPlot>=0.20.1->nanopack)
Using cached https://files.pythonhosted.org/packages/41/17/c62faccbfbd163c7f57f3844689e3a78bae1f403648a6afb1d0866d87fbb/python_dateutil-2.8.0-py2.py3-none-any.whl
Collecting scipy (from NanoPlot>=0.20.1->nanopack)
Downloading https://files.pythonhosted.org/packages/7f/5f/c48860704092933bf1c4c1574a8de1ffd16bf4fde8bab190d747598844b2/scipy-1.2.1-cp36-cp36m-manylinux1_x86_64.whl (24.8MB)
100% |████████████████████████████████| 24.8MB 55kB/s
Collecting seaborn (from NanoPlot>=0.20.1->nanopack)
Downloading https://files.pythonhosted.org/packages/a8/76/220ba4420459d9c4c9c9587c6ce607bf56c25b3d3d2de62056efe482dadc/seaborn-0.9.0-py3-none-any.whl (208kB)
100% |████████████████████████████████| 215kB 1.2MB/s
Collecting matplotlib>=2.1.0 (from nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/71/07/16d781df15be30df4acfd536c479268f1208b2dfbc91e9ca5d92c9caf673/matplotlib-3.0.2-cp36-cp36m-manylinux1_x86_64.whl (12.9MB)
100% |████████████████████████████████| 12.9MB 99kB/s
Collecting pauvre==0.1.86 (from nanoplotter>=0.16.5->nanopack)
Using cached https://files.pythonhosted.org/packages/f0/70/b1a2c106128156d2f234964caee3f900733f81b67df51ffa62591e5bba46/pauvre-0.1.86.tar.gz
Collecting plotly>=3.4.2 (from nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/fd/db/003b5cfbc710f4d4982440451185b952269e4080a57ae7e760a2ceb8ce0c/plotly-3.6.1-py2.py3-none-any.whl (38.6MB)
100% |████████████████████████████████| 38.6MB 35kB/s
Collecting statsmodels>=0.8.0 (from nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/85/d1/69ee7e757f657e7f527cbf500ec2d295396e5bcec873cf4eb68962c41024/statsmodels-0.9.0-cp36-cp36m-manylinux1_x86_64.whl (7.4MB)
100% |████████████████████████████████| 7.4MB 155kB/s
Collecting pytz>=2011k (from pandas->NanoComp>=0.4.0->nanopack)
Using cached https://files.pythonhosted.org/packages/61/28/1d3920e4d1d50b19bc5d24398a7cd85cc7b9a75a490570d5a30c57622d34/pytz-2018.9-py2.py3-none-any.whl
Collecting six>=1.5 (from python-dateutil->NanoPlot>=0.20.1->nanopack)
Using cached https://files.pythonhosted.org/packages/73/fb/00a976f728d0d1fecfe898238ce23f502a721c0ac0ecfedb80e0d88c64e9/six-1.12.0-py2.py3-none-any.whl
Collecting pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 (from matplotlib>=2.1.0->nanoplotter>=0.16.5->nanopack)
Using cached https://files.pythonhosted.org/packages/de/0a/001be530836743d8be6c2d85069f46fecf84ac6c18c7f5fb8125ee11d854/pyparsing-2.3.1-py2.py3-none-any.whl
Collecting kiwisolver>=1.0.1 (from matplotlib>=2.1.0->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/69/a7/88719d132b18300b4369fbffa741841cfd36d1e637e1990f27929945b538/kiwisolver-1.0.1-cp36-cp36m-manylinux1_x86_64.whl (949kB)
100% |████████████████████████████████| 952kB 1.3MB/s
Collecting cycler>=0.10 (from matplotlib>=2.1.0->nanoplotter>=0.16.5->nanopack)
Using cached https://files.pythonhosted.org/packages/f7/d2/e07d3ebb2bd7af696440ce7e754c59dd546ffe1bbe732c8ab68b9c834e61/cycler-0.10.0-py2.py3-none-any.whl
Collecting decorator>=4.0.6 (from plotly>=3.4.2->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/f1/cd/7c8240007e9716b14679bc217a1baefa4432aa30394f7e2ec40a52b1a708/decorator-4.3.2-py2.py3-none-any.whl
Collecting retrying>=1.3.3 (from plotly>=3.4.2->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/44/ef/beae4b4ef80902f22e3af073397f079c96969c69b2c7d52a57ea9ae61c9d/retrying-1.3.3.tar.gz
Collecting requests (from plotly>=3.4.2->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/7d/e3/20f3d364d6c8e5d2353c72a67778eb189176f08e873c9900e10c0287b84b/requests-2.21.0-py2.py3-none-any.whl (57kB)
100% |████████████████████████████████| 61kB 5.9MB/s
Collecting nbformat>=4.2 (from plotly>=3.4.2->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/da/27/9a654d2b6cc1eaa517d1c5a4405166c7f6d72f04f6e7eea41855fe808a46/nbformat-4.4.0-py2.py3-none-any.whl (155kB)
100% |████████████████████████████████| 163kB 4.5MB/s
Collecting patsy (from statsmodels>=0.8.0->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/ea/0c/5f61f1a3d4385d6bf83b83ea495068857ff8dfb89e74824c6e9eb63286d8/patsy-0.5.1-py2.py3-none-any.whl (231kB)
100% |████████████████████████████████| 235kB 3.2MB/s
Collecting setuptools (from kiwisolver>=1.0.1->matplotlib>=2.1.0->nanoplotter>=0.16.5->nanopack)
Using cached https://files.pythonhosted.org/packages/d1/6a/4b2fcefd2ea0868810e92d519dacac1ddc64a2e53ba9e3422c3b62b378a6/setuptools-40.8.0-py2.py3-none-any.whl
Collecting chardet<3.1.0,>=3.0.2 (from requests->plotly>=3.4.2->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/bc/a9/01ffebfb562e4274b6487b4bb1ddec7ca55ec7510b22e4c51f14098443b8/chardet-3.0.4-py2.py3-none-any.whl (133kB)
100% |████████████████████████████████| 143kB 5.3MB/s
Collecting idna<2.9,>=2.5 (from requests->plotly>=3.4.2->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/14/2c/cd551d81dbe15200be1cf41cd03869a46fe7226e7450af7a6545bfc474c9/idna-2.8-py2.py3-none-any.whl (58kB)
100% |████████████████████████████████| 61kB 5.1MB/s
Collecting certifi>=2017.4.17 (from requests->plotly>=3.4.2->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/9f/e0/accfc1b56b57e9750eba272e24c4dddeac86852c2bebd1236674d7887e8a/certifi-2018.11.29-py2.py3-none-any.whl (154kB)
100% |████████████████████████████████| 163kB 4.4MB/s
Collecting urllib3<1.25,>=1.21.1 (from requests->plotly>=3.4.2->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/62/00/ee1d7de624db8ba7090d1226aebefab96a2c71cd5cfa7629d6ad3f61b79e/urllib3-1.24.1-py2.py3-none-any.whl (118kB)
100% |████████████████████████████████| 122kB 4.7MB/s
Collecting ipython-genutils (from nbformat>=4.2->plotly>=3.4.2->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/fa/bc/9bd3b5c2b4774d5f33b2d544f1460be9df7df2fe42f352135381c347c69a/ipython_genutils-0.2.0-py2.py3-none-any.whl
Collecting jsonschema!=2.5.0,>=2.4 (from nbformat>=4.2->plotly>=3.4.2->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/cd/e6/be1b2a6ebebdaf1f790f1e750bb720fbda0335c2a19601ea9d8bb5059f38/jsonschema-3.0.0-py2.py3-none-any.whl (54kB)
100% |████████████████████████████████| 61kB 6.3MB/s
Collecting traitlets>=4.1 (from nbformat>=4.2->plotly>=3.4.2->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/93/d6/abcb22de61d78e2fc3959c964628a5771e47e7cc60d53e9342e21ed6cc9a/traitlets-4.3.2-py2.py3-none-any.whl (74kB)
100% |████████████████████████████████| 81kB 6.3MB/s
Collecting jupyter-core (from nbformat>=4.2->plotly>=3.4.2->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/1d/44/065d2d7bae7bebc06f1dd70d23c36da8c50c0f08b4236716743d706762a8/jupyter_core-4.4.0-py2.py3-none-any.whl (126kB)
100% |████████████████████████████████| 133kB 4.8MB/s
Collecting pyrsistent>=0.14.0 (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2->plotly>=3.4.2->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/8c/46/4e93ab8a379d7efe93f20a0fb8a27bdfe88942cc954ab0210c3164e783e0/pyrsistent-0.14.11.tar.gz (104kB)
100% |████████████████████████████████| 112kB 4.6MB/s
Collecting attrs>=17.4.0 (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2->plotly>=3.4.2->nanoplotter>=0.16.5->nanopack)
Downloading https://files.pythonhosted.org/packages/3a/e1/5f9023cc983f1a628a8c2fd051ad19e76ff7b142a0faf329336f9a62a514/attrs-18.2.0-py2.py3-none-any.whl
Building wheels for collected packages: nanopack, NanoComp, NanoFilt, NanoGUI, NanoLyse, NanoPlot, NanoStat, nanoget, nanomath, nanoplotter, psutil, mappy, pauvre, retrying, pyrsistent
Running setup.py bdist_wheel for nanopack ... done
Stored in directory: /home/user/.cache/pip/wheels/03/38/47/12ff3f64dcef32f2a9fcd92e57c3fdf8fb8953db45e083a806
Running setup.py bdist_wheel for NanoComp ... done
Stored in directory: /home/user/.cache/pip/wheels/ae/88/53/f817a6e2106e5518ab72a0c9c6193318d84b1ba8de82f279f9
Running setup.py bdist_wheel for NanoFilt ... done
Stored in directory: /home/user/.cache/pip/wheels/dd/c0/fb/671cd6f70dc0ef487ce9e155e1c181ad7ee660d66843a0c4c1
Running setup.py bdist_wheel for NanoGUI ... done
Stored in directory: /home/user/.cache/pip/wheels/43/da/4a/2e2d1f57a5ad2eacaac123f036096c2be9ce4a996e94551fc4
Running setup.py bdist_wheel for NanoLyse ... done
Stored in directory: /home/user/.cache/pip/wheels/68/6d/64/27b22d72fac5d81ed03f70d98c141ce056fdada3d1860132cb
Running setup.py bdist_wheel for NanoPlot ... done
Stored in directory: /home/user/.cache/pip/wheels/1b/5b/3e/6c83f4fed51f3960855fad667a1010be1086edcc023207a679
Running setup.py bdist_wheel for NanoStat ... done
Stored in directory: /home/user/.cache/pip/wheels/ad/ab/b1/55c9bf3e44f4229d21815a72c729bfa0ddfb502a32a060a9f7
Running setup.py bdist_wheel for nanoget ... done
Stored in directory: /home/user/.cache/pip/wheels/b3/6c/58/9455b58b65606ddef508f2eed959a2cd17bfe7ee3b3ff6d79c
Running setup.py bdist_wheel for nanomath ... done
Stored in directory: /home/user/.cache/pip/wheels/64/7a/53/59b333f92366f22359fda6aab46098068b42372508748f6173
Running setup.py bdist_wheel for nanoplotter ... done
Stored in directory: /home/user/.cache/pip/wheels/6d/f8/45/a2685a78ec02d253bb0e233d8a7901dbd7efc8c6637c9e731f
Running setup.py bdist_wheel for psutil ... done
Stored in directory: /home/user/.cache/pip/wheels/b4/9c/85/b73f594568ccc19c310ec6c61564346dd16c96aa2c35c5849a
Running setup.py bdist_wheel for mappy ... done
Stored in directory: /home/user/.cache/pip/wheels/16/61/f2/3ab933f528809270525fdf5b4f85d633b9212082a1d120fbd2
Running setup.py bdist_wheel for pauvre ... done
Stored in directory: /home/user/.cache/pip/wheels/6e/2b/00/0e4d27ead78a742a19bc4705a54bdcaae9cc456974b234bfad
Running setup.py bdist_wheel for retrying ... done
Stored in directory: /home/user/.cache/pip/wheels/d7/a9/33/acc7b709e2a35caa7d4cae442f6fe6fbf2c43f80823d46460c
Running setup.py bdist_wheel for pyrsistent ... done
Stored in directory: /home/user/.cache/pip/wheels/83/59/9a/a037b9b3c3e93d9275ea0aff9d6064400f372879dfdab01afe
Successfully built nanopack NanoComp NanoFilt NanoGUI NanoLyse NanoPlot NanoStat nanoget nanomath nanoplotter psutil mappy pauvre retrying pyrsistent
Installing collected packages: numpy, biopython, pytz, six, python-dateutil, pandas, nanomath, pysam, nanoget, pyparsing, setuptools, kiwisolver, cycler, matplotlib, scipy, pauvre, decorator, retrying, chardet, idna, certifi, urllib3, requests, ipython-genutils, pyrsistent, attrs, jsonschema, traitlets, jupyter-core, nbformat, plotly, seaborn, patsy, statsmodels, nanoplotter, NanoPlot, psutil, NanoComp, NanoFilt, NanoGUI, mappy, NanoLyse, NanoStat, nanopack
Successfully installed NanoComp-1.4.0 NanoFilt-2.2.0 NanoGUI-0.1.0 NanoLyse-1.1.0 NanoPlot-1.21.0 NanoStat-1.1.2 attrs-18.2.0 biopython-1.73 certifi-2018.11.29 chardet-3.0.4 cycler-0.10.0 decorator-4.3.2 idna-2.8 ipython-genutils-0.2.0 jsonschema-3.0.0 jupyter-core-4.4.0 kiwisolver-1.0.1 mappy-2.15 matplotlib-3.0.2 nanoget-1.7.7 nanomath-0.22.0 nanopack-1.0.0 nanoplotter-1.3.1 nbformat-4.4.0 numpy-1.16.1 pandas-0.24.1 patsy-0.5.1 pauvre-0.1.86 plotly-3.6.1 psutil-5.5.1 pyparsing-2.3.1 pyrsistent-0.14.11 pysam-0.15.2 python-dateutil-2.8.0 pytz-2018.9 requests-2.21.0 retrying-1.3.3 scipy-1.2.1 seaborn-0.9.0 setuptools-40.8.0 six-1.12.0 statsmodels-0.9.0 traitlets-4.3.2 urllib3-1.24.1
This worked!!
$ NanoComp -h
usage: NanoComp [-h] [-v] [-t THREADS] [-o OUTDIR] [-p PREFIX] [--verbose]
[--raw] [--readtype {1D,2D,1D2}] [--maxlength N]
[--minlength N] [--barcoded] [--split_runs TSV_FILE]
[-f {eps,jpeg,jpg,pdf,pgf,png,ps,raw,rgba,svg,svgz,tif,tiff}]
[-n names [names ...]] [-c colors [colors ...]]
[--plot {violin,box,false}] [--title TITLE] [--dpi DPI]
(--fasta file [file ...] | --fastq files [files ...] | --summary files [files ...] | --bam files [files ...])
Compares long read sequencing datasets.
fastqc -java.lang.OutOfMemoryError: Java heap space - Solved!
$fastqc filename.fastq
Started analysis of filename.fastq
Exception in thread "Thread-1" java.lang.OutOfMemoryError: Java heap space
at uk.ac.babraham.FastQC.Modules.GCModel.GCModel.<init>(GCModel.java:69)
at uk.ac.babraham.FastQC.Modules.PerSequenceGCContent.processSequence(PerSequenceGCContent.java:198)
at uk.ac.babraham.FastQC.Analysis.AnalysisRunner.run(AnalysisRunner.java:88)
at java.base/java.lang.Thread.run(Thread.java:844)
$ grep -n 'Xm' /home/prakki/sw/FastQC/fastqc
167: unshift @java_args,"-Xmx${memory}m";
170: unshift @java_args,'-Xmx250m';
$ vi /home/prakki/sw/FastQC/fastqc
Changed the 250m to 10g (depends on the RAM of your computer) in the line 170
$ fastqc filename.fastq
Started analysis of filename.fastq
Approx 5% complete for filename.fastq
Approx 10% complete for filename.fastq
Approx 15% complete for filename.fastq
Approx 20% complete for filename.fastq
Approx 25% complete for filename.fastq
Approx 30% complete for filename.fastq
Approx 35% complete for filename.fastq
Approx 40% complete for filename.fastq
Approx 45% complete for filename.fastq
Approx 50% complete for filename.fastq
Approx 55% complete for filename.fastq
Approx 60% complete for filename.fastq
Approx 65% complete for filename.fastq
Approx 70% complete for filename.fastq
Approx 75% complete for filename.fastq
Approx 80% complete for filename.fastq
Approx 85% complete for filename.fastq
Approx 90% complete for filename.fastq
Approx 95% complete for filename.fastq
Analysis complete for filename.fastq
Started analysis of filename.fastq
Exception in thread "Thread-1" java.lang.OutOfMemoryError: Java heap space
at uk.ac.babraham.FastQC.Modules.GCModel.GCModel.<init>(GCModel.java:69)
at uk.ac.babraham.FastQC.Modules.PerSequenceGCContent.processSequence(PerSequenceGCContent.java:198)
at uk.ac.babraham.FastQC.Analysis.AnalysisRunner.run(AnalysisRunner.java:88)
at java.base/java.lang.Thread.run(Thread.java:844)
$ grep -n 'Xm' /home/prakki/sw/FastQC/fastqc
167: unshift @java_args,"-Xmx${memory}m";
170: unshift @java_args,'-Xmx250m';
$ vi /home/prakki/sw/FastQC/fastqc
Changed the 250m to 10g (depends on the RAM of your computer) in the line 170
$ fastqc filename.fastq
Started analysis of filename.fastq
Approx 5% complete for filename.fastq
Approx 10% complete for filename.fastq
Approx 15% complete for filename.fastq
Approx 20% complete for filename.fastq
Approx 25% complete for filename.fastq
Approx 30% complete for filename.fastq
Approx 35% complete for filename.fastq
Approx 40% complete for filename.fastq
Approx 45% complete for filename.fastq
Approx 50% complete for filename.fastq
Approx 55% complete for filename.fastq
Approx 60% complete for filename.fastq
Approx 65% complete for filename.fastq
Approx 70% complete for filename.fastq
Approx 75% complete for filename.fastq
Approx 80% complete for filename.fastq
Approx 85% complete for filename.fastq
Approx 90% complete for filename.fastq
Approx 95% complete for filename.fastq
Analysis complete for filename.fastq
Subscribe to:
Posts (Atom)